

Standardized Definitions and Approaches for Vertical Resolution and Uncertainty in the NDACC Ozone DIAL Algorithms

<u>Thierry Leblanc</u> ¹, R. J. Sica ², S. Godin-Beekmann ³, J. A. E. van Gijsel ⁴, G. Liberti ⁵, G. Payen ⁶, F. Gabarrot ⁶, T. Trickl ⁷, and A. Haefele ⁸

- (1) California Institute of Technology, Jet Propulsion Laboratory,
- (2) The University of Western Ontario, London, Canada
- (3) LATMOS-IPSL, CNRS-INSU, Paris, France
- (4) Royal Netherlands Meteorological Institute (KNMI), Netherlands
- (5) ISAC-CNR, Rome, Italy
- (6) Obs. des Sci. de l'Univers de La Réunion, CNRS/Université de la Réunion, France
- (7) Karlsruher Institut für Technologie, IMK-IFU, Garmisch-Partenkirchen, Germany
- (8) Meteoswiss, Payerne, Switzerland

Why standardized definitions and approaches for vertical resolution and uncertainty?

NDACC Data

NDACC lidars use a wide spectrum of methodologies and technologies to measure ozone, temperature, aerosols, and water vapor

Archive Center

As a result, it is difficult to archive measurement and analysis information consistently across the network

NDACC Lidar 2

Yet, consistent definitions are needed for data exploitation such as satellite validation, profile intercomparison, assimilation in numerical models, and trend studies

NDACC Lidar 3

NDACC

Lidar 1

→ To address this, an ISSI Team composed of NDACC Lidar Working Group members recently formulated new recommendations for the use of standardized definitions and approaches leading to a network-wide, consistent reporting of vertical resolution and uncertainty in the NDACC lidar data files

NDACC-standardized definition 1: Use FWHM of Impulse Response

$$S_{f}(k) = \sum_{n=-N}^{N} c_{n} S(k+n)$$

$$c_{n} = \text{Filter coefficient } c_{n} \text{ at altitude } z(k)$$

First, we assume that the lidar signal (or the retrieved species profile) is vertically filtered at some point during data processing

 $I_{INP}(k,n)$ = Impulse at altitude z(k) and distance n from z(k)

NDACC-standardized definition 1: Use FWHM of Impulse Response

NDACC-standardized definition 1: Use FWHM of Impulse Response

Quadrennial Ozone Symposium 2016, Sept. 4-9, 2016, Edinburgh, UK

NDACC-standardized definition 1: Use FWHM of Impulse Response

Quadrennial Ozone Symposium 2016, Sept. 4-9, 2016, Edinburgh, UK

NDACC-standardized definition 1: Use FWHM of Impulse Response

all the way to the final

archived product!

If multiple smoothing occurrences during data processing

Where is this vertical resolution reported?

Two new variables have been added to the NDACC lidar data files archived in HDF format:

The vector Δz_{IR} just defined is reported in the following NDACC Lidar HDF variable: 03.NUMBER.DENSITY_ABSORPTION.DIFFERENTIAL_RESOLUTION.ALTITUDE.IMPULSE.RESPONSE.FWHM

The 2D array $I_{OUT}(nk,nm)$ is reported in the following NDACC Lidar HDF variable: 03.NUMBER.DENSITY_ABSORPTION.DIFFERENTIAL_RESOLUTION.ALTITUDE.IMPULSE.RESPONSE

The vertical resolution "historically" reported by the PI is now reported in the following HDF variable:

O3.NUMBER.DENSITY_ABSORPTION.DIFFERENTIAL_RESOLUTION.ALTITUDE.ORIGINATOR

It is currently kept for consistency, but will become obsolete soon

NDACC-lidar standardized vertical resolution definition 2

Second definition (optional) based on the cut-off frequency of Digital Filters:

- 1. Apply Laplace Transform to coefs
- 2. Identify cut-off frequency (i.e., where Transfer Function = 0.5).
- 3. Take inverse of cut-off frequency and multiple by half the sampling resolution

Note the factor of "2", different from what is used in spectral analysis

This factor allows consistent values with Definition 1 (IR)

NDACC-wide (and beyond...) implementation

Numerical tools:

2 subroutines (1 per definition) written in IDL, FORTRAN, MATLAB, C++, and PYTHON, compute automatically vertical resolution following the standardized definitions, and were distributed to all NDACC lidar PIs

Documentation:

How to use the routines, and how to write the new standardized variables into the NDACC HDF data files in preparation

Note:

- The "IR" definition (definition 1) has a physical meaning that reminds the AK reported for passive remote sensing techniques
- Both standardized definitions can be used likewise for water vapor and aerosol lidar
- Other networks, such as TOLNet (Tropospheric Ozone Lidar Network)
 and GRUAN (in preparation), have also adopted this standardization

Now about NDACC-Standardized Uncertainty Budget...

Just like for vertical resolution,
it is NOT the quantitative estimates
that are being standardized,
but the definitions and approaches

NASA

Sources

For ozone DIAL, 11 independent sources suitable for standardization:

- Detection noise
- Signal saturation (pile-up) correction
- Background noise extraction
- Ozone absorption cross-section
- Molecular extinction cross-section
- Ancillary air density profile (or temperature and pressure)
- NO₂ absorption cross-sections
- Ancillary NO₂ profile
- *SO*₂ absorption cross-sections
- Ancillary SO₂ profile
- O₂ absorption cross-section (Herzberg region)

3 sources currently unsuitable for standardization:

- Analog-to-digital signal conversion subsystems
- Partial beam-telescope field-of-view overlap (a.k.a "misalignment")
- Contamination by particulate extinction and backscatter
- → Additional work is required before we can provide recommendations for a standardized treatment of uncertainty associated with these sources

Propagation

4 main recommendations:

- Use traceable input quantities (e.g., well-documented absorption cross-section datasets with uncertainties)
- Use variance propagation rule to propagate each of the 11 components in parallel, including covariance terms when necessary
- For fundamental physical constants: Use metrological sources (e.g., CODATA) for proper decimal truncation, and assume zero-uncertainty
- Combine all components only at the very end of data processing, (just before archiving in the NDACC data file)

example 1:

JPL stratospheric ozone lidar at Mauna Loa, Hawaii

Solid curves: Total combined uncertainty

Other curves: Individual uncertainty components

Quantitative estimates can vary significantly, depending on lidar instrument considered!

- Combined standard uncertainty
- Contribution from detection noise
- -2- Contribution from saturation
- $-\frac{3}{2}$ Contribution from background noise
- —4... Contribution from ozone absorption cross-sections
- ⁵ Contribution from a priori air number density
- Contribution from Rayleigh cross-sections
- -7... Contribution from a priori NO2 number density
- -8 Contribution from NO2 cross-sections

JPL-Mauna Loa stratospheric ozone DIAL (120-min integration on March 13, 2009)

Ozone uncertainty owed to detection noise:

Dominant at the top of the profile

Combined standard uncertainty

- -2 Contribution from saturation
- -3 Contribution from background noise
- -4... Contribution from ozone absorption cross-sections
- ⁵ Contribution from a priori air number density
- Contribution from Rayleigh cross-sections
- Contribution from a priori NO2 number density
- 8 Contribution from NO2 cross-sections

ozone lidar at

JPL stratospheric

JPL-Mauna Loa stratospheric ozone DIAL (120-min integration on March 13, 2009)

Ozone uncertainty owed to saturation correction:

Dominant at the bottom of the profile

- Combined standard uncertainty
- Contribution from detection noise
- -2 Contribution from saturation
- $-\frac{3}{2}$ Contribution from background noise
- -4... Contribution from ozone absorption cross-sections
- ⁵ Contribution from a priori air number density
- Contribution from Rayleigh cross-sections
- Contribution from a priori NO2 number density

ozone lidar at

JPL-Mauna Loa stratospheric ozone DIAL (120-min integration on March 13, 2009)

Ozone uncertainty owed to ozone absorption cross-sections: Constant (%) throughout profile

0.01

0.10

1.00

Ozone Uncertainty (%)

10.00

Combined standard uncertainty

100.00

- Contribution from detection noise
- -2- Contribution from saturation
- -3- Contribution from background noise
- -4-- Contribution from ozone absorption cross-sections

0.01

0.10

1.00

Ozone Uncertainty (ppmv)

10.00

100.00

- _5 Contribution from a priori air number density
- Contribution from Rayleigh cross-sections
- Contribution from a priori NO2 number density

JPL-Mauna Loa stratospheric ozone DIAL (120-min integration on March 13, 2009)

Ozone uncertainty owed to Rayleigh cross-sec. :

Very small except below 18 km (larger for Raman channels)

- Combined standard uncertainty
- Contribution from detection noise
- -2- Contribution from saturation
- -3- Contribution from background noise
- -4... Contribution from ozone absorption cross-sections
- ⁵ Contribution from a priori air number density
- -7... Contribution from a priori NO2 number density

Use of Uncertainty Information by NDACC Data Users

More recommendations

- NDACC Lidar PIs must document correlation properties and dependencies of input quantities and their associated uncertainty
- NDACC PIs must document correlation properties and dependencies of all ozone uncertainty components (systematic vs. random?, in what dimensions? Etc.)
 - → Critical for proper handling of "Level-3+ data" (climatologies, assimilation in models, trend studies, etc.)

Use of Uncertainty Information by NDACC Data Users

Use of Uncertainty Information by NDACC Data Users

Most trend analysis techniques can analytically handle the propagation of sophisticated expression of uncertainty → Let's not be shy about it

Above statement applies likewise for single or combined datasets

CONCLUSION

For the first time in 20 years, NDACC Lidar Group went through a major redesign of their metadata definitions

Full impact of those changes will not be seen until all NDACC lidar datasets are fully re-analyzed using new definitions and approaches

There is a plan to extend this work to Water Vapor and Aerosol Lidars (new ISSI Team?)

More details on this work is available in 3 companion papers:

Leblanc, T., et al.: Proposed standardized definitions for vertical resolution and uncertainty in the NDACC lidar ozone and temperature algorithms

- Part 1: Vertical resolution, Atmos. Meas. Tech., 9, 4029-4049, doi:10.5194/amt-9-4029-2016, 2016
- Part 2: Ozone DIAL uncertainty budget, Atmos. Meas. Tech., 9, 4051-4078, 10.5194/amt-9-4051-2016, 2016
- Part 3: Temperature uncertainty budget, Atmos. Meas. Tech., 9, 4079-4101, 10.5194/amt-9-4079-2016, 2016

..and in the "ISSI Team Report" (soon to be WMO Tech. Report):

http://www.issibern.ch/teams/ndacc/ISSI Team Report.htm

INTERNATIONAL SPACE SCIENCE INSTITUTE

THANK YOU

BACKUP SLIDES

Why a standardized definition of vertical resolution?

- Ozone DIAL raw data typically needs some smoothing at some point
- Actual resolution of the instrument degraded by vertical filtering during data processing

Simple formulation of the smoothing process:

$$S_f(k) = \sum_{n=-N}^{N} c_n S(k+n)$$

→ Instrument "vertical sampling resolution"

degraded to

ozone profile "vertical resolution"

There are various ways to report vertical resolution in data files Example highlighting ambiguity:

We start with a modeled signal

→ green curve

There are various ways to report vertical resolution in data files Example highlighting ambiguity:

We add noise to make it look like a real signal

→ grey curve

There are various ways to report vertical resolution in data files Example highlighting ambiguity:

We then smooth it with 11-pts FWHM linear fit

→ blue curve

There are various ways to report vertical resolution in data files Example highlighting ambiguity:

We also smooth it with 11-pts FWHM polynomial fit degree-2

→ Red curve

Problem: With the same number of filter coefficients (11 points in this example), we obtain different answers → reporting vertical resolution is ambiguous

Solution: Find a "unique" definition that works well for most NDACC Lidar PIs

Saturation correction and Ozone Uncertainty (%) molecular extinction cross-sect.

Largest components below 20 km

Ozone Uncertainty (%)

— Con

NOTE:

All NDACC lidars are different and there are as many different uncertainty budgets as instruments

- Combined standard uncertainty
- Contribution from detection noise
- $-^2$ Contribution from saturation
- $-\frac{3}{2}$ Contribution from background noise
- _⁴... Contribution from ozone absorption cross-sections

Ozone Uncertainty (ppmv)

- $\frac{5}{2}$ Contribution from a priori air number density
- Contribution from Rayleigh cross-sections
- -7--- Contribution from a priori NO2 number density
- -8 Contribution from NO2 cross-sections